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Introduction 
Multi-agent reinforcement learning (MARL) is a subfield of artificial intelligence concerned 

with training multiple intelligent agents to learn and make decisions collaboratively in complex 

environments. In traditional reinforcement learning, a single agent interacts with an 

environment and receives rewards based on its actions. The agent then learns to maximize its long-

term rewards by adapting its behavior based on these rewards. However, in MARL, multiple agents 

are present, and their actions can influence each other. This introduces additional challenges, as 

each agent must learn not only how to act optimally in the environment but also how to coordinate 

its actions with the other agents to achieve a common goal. 

MARL has the potential to revolutionize a wide range 

of applications, including robotics, autonomous 

vehicles, game playing, and even economic modeling. 

This project aims to explore and implement MARL 

techniques in the context of a predator and prey game. 

In this game, one or more predator agents must learn to 

capture prey agents who may be avoiding capture 

themselves. This simple yet challenging environment 

provides a valuable testbed for investigating different 

MARL algorithms and strategies. 

The motivation for this project stems from the belief 

that MARL has the potential to significantly improve 

the performance of intelligent agents in cooperative 

settings. By understanding how to train multiple agents to 

work together effectively, we can create new and 

innovative solutions to complex real-world problems. 

Requirements 

    Neural Network Design 

The design of the neural network is crucial for the success of this project. The network must be 

able to effectively represent the state space and action space of the environment. Additionally, the 

network should be able to learn and adapt to the changing environment and the evolving strategies 

of the prey. 

Here are some specific requirements for the neural network: 

• Input layer: The input layer should accept information about the current state of the 

environment, including the positions of the predators and the prey. 

• Hidden layers: The hidden layers should be able to extract features from the input data 

and learn the relationships between different features. 

• Output layer: The output layer should produce a set of action probabilities, one for each 

possible action that a predator can take. 

https://www.mdpi.com/2076-3417/11/22/10870 

 



The specific size and architecture of the neural network will be determined through 

experimentation. We will experiment with different network architectures and hyperparameters 

to find the best-performing network for this task. 

    Parameter Selection 

The selection of hyperparameters, such as the learning rate, batch size, and optimizer can also 

significantly impact the performance of the neural network. We will test different values of these 

hyperparameters and compare how they affect the network’s learning efficiency. 

Here are some specific requirements for hyperparameter selection: 

• Learning Rate: 

• Definition: The learning rate determines the magnitude of weight updates in 

response to new data. Too small a learning rate may result in slow learning, while 

an excessively large learning rate can lead to instability. 

• Impact: The learning rate significantly influences the convergence speed and 

stability of the training process. 

• Batch Size: 

• Definition: The batch size represents the number of samples used to update the 

network's weights in each training iteration. A larger batch size can improve 

training efficiency but may increase the risk of overfitting. 

• Impact: Batch size affects the trade-off between computational efficiency and 

model generalization. 

• Optimizers: 

• The optimizer is a crucial component in training neural networks. Two common 

optimizers are Adam and RMSProp. 

• Adam: Adaptive Moment Estimation, adjusts the learning rates of each 

parameter individually, providing adaptive control. 

• RMSProp: Root Mean Square Propagation, adjusts the learning rates based on 

the moving average of squared gradients, contributing to more stable 

convergence. 

 

• Number of Nodes: 

• Definition: The number of nodes refers to the size of the hidden layers in the neural 

network. It directly impacts the model’s capacity to capture complex patterns in the 

data. 

• Impact: Adjusting the number of nodes influences the model’s ability to represent 

intricate relationships in the data. 

    VDN Algorithm Implementation 

We will implement the VDN (Value-Decomposition Network) algorithm, which is a popular 

MARL algorithm that is effective in various tasks. VDN is a value-based algorithm that learns a 

value function for each state-action pair. The value function indicates the expected long-term 

reward that a predator can expect to receive by taking a particular action in a particular state. 



    Prey Escape Strategy Design 

Given that the prey does not actively learn, it becomes imperative to design an escape strategy 

that enables the prey to navigate the environment strategically, evading capture from the learning 

predators. The escape strategy should not only be effective against various predator strategies but 

also possess adaptability to diverse situations. 

Here are some specific requirements for the prey escape strategy: 

• Random Movement: 

o Description: The prey will exhibit random movements, introducing an 

unpredictable element to its escape strategy. 

o Rationale: Random movement adds an element of uncertainty, challenging the 

adaptability of the predator agents. 

• Stays: 

o Description: The prey has the option to remain stationary, introducing a contrasting 

behavior to its escape strategy. 

o Rationale: This stationary behavior serves as a baseline scenario, enabling the 

predators to understand and adapt to a situation where the prey is not actively 

evading capture. By introducing such a behavior, the learning agents (predators) 

can observe the consequences of their actions in a more predictable setting.  

• Designed Strategy 

o Description: The prey employs a designed strategy to move farthest away from the 

nearest predator and move in the opposite direction of any adjacent predator. 

o Rationale: This designed strategy leverages a combination of distance-based 

evasion and opposite movements to outmaneuver nearby predators systematically. 

By following these requirements, we will ensure that the neural network, hyperparameters, VDN 

algorithm, and prey escape strategy are designed and implemented effectively. This will help us 

to achieve our goal of training a team of predators to capture a single prey using MARL. 

 

Part One: Neural Network Design 
The neural network architecture is a pivotal component in our pursuit of effective reinforcement 

learning algorithms for the predator-prey scenario. The original implementation featured a 

straightforward design with a single dense layer, mapping the state information to action 

probabilities using a linear activation function. In hopes of improved performance, we introduced 

a more complex, multilayer perceptron (MLP) neural network architecture. 

 

    1.1 Original Architecture Overview 

The initial neural network encapsulated within the Brain.build_model() function in agent.py, 

exhibited simplicity with a linear activation function in the output layer. The output layer 

contains neurons equal to the number of available actions the predator can take (move up, down, 



left, right, and stay). Each neuron in this layer represents the Q-value of the corresponding action, 

indicating the expected reward associated with taking that action in the current state. This 

architecture while computationally less expensive, suffers from a few drawbacks: 

• Reduced Performance: Experiments have shown that the simple dense layer approach 

often leads to lower overall performance compared to the MLP architecture. This is 

because the single hidden layer may not be able to effectively represent the complex 

relationships within the environment. 

• Inability to Learn Complex Behaviors: The simpler architecture may struggle to learn 

certain complex behaviors, such as coordinated hunting strategies, essential for successful 

predator performance. 

    1.2 Enhanced Architecture 

To elevate the model's representational capacity, we extended the architecture by introducing 

additional layers and complexity. The modifications include the incorporation of multiple hidden 

layers, each followed by batch normalization and dropout for regularization. Additionally, we 

adopted the rectified linear unit (ReLU) activation function for its ability to capture non-

linearities in the data. 

This revised architecture aims to capture intricate patterns in the environment, facilitating 

improved decision-making by the predator agents. 

    1.2.1 Batch Normalization and Dropout Layers 

Batch normalization and dropout layers play crucial roles in enhancing the robustness and 

generalization capabilities of neural networks. 

• Batch Normalization: This layer normalizes the input of a neural network layer by 

adjusting and scaling the activations. It helps mitigate the internal covariate shift, 

promoting stable and faster convergence during training. 

• Dropout: Dropout is a regularization technique that aids in preventing overfitting. During 

training, randomly selected neurons are "dropped out" or omitted from the forward and 

backward passes. This forces the network to learn more robust features and reduces 

reliance on specific neurons, contributing to better generalization. 

By incorporating batch normalization and dropout layers in the proposed architecture, we aim to 

improve the overall learning dynamics and prevent the neural network from overfitting specific 

patterns in the training data. These additions contribute to the adaptability and efficiency of the 

model in learning the complex dynamics of the predator-prey environment. 

    1.2.2 Rationale for Choice 

Several factors informed the decision to use this specific neural network architecture: 

• Complexity of Environment: The predator and prey game, while conceptually 

simple, presents a dynamic and complex environment due to the presence of multiple 

agents and the need for coordinated action. The chosen MLP architecture, with its multiple 



hidden layers, ReLU activation functions, and batch normalizations provides sufficient 

capacity to capture the intricacies of this environment and learn effective decision-making 

strategies. 

• Performance Objectives: The project's primary objective is to train the predator agents to 

efficiently capture prey while maximizing their long-term reward. The selected MLP 

architecture, with its focus on Q-value estimation and action selection, aligns well with this 

objective by allowing the agents to learn and execute actions that lead to the highest 

expected rewards. 

• Computational Constraints: While a more complex network architecture might offer 

potentially higher performance, it would also require significantly more computational 

resources for training and execution. The chosen MLP architecture strikes a balance 

between performance and efficiency, allowing for effective learning within the available 

computational resources. 

    1.3 Training Parameter Considerations 

As we introduced architectural enhancements, the configuration of training parameters became 

paramount. The learning rate, batch size, and optimizer selection were explored to ensure the 

model's effective adaptation to the environment. The following sections will delve into the 

specifics of these parameter adjustments and their impact on the learning process. 

Part Two: Parameter Selections 
The selection of appropriate training parameters plays a crucial role in the performance of the 

MARL algorithm. These parameters guide the learning process and significantly influence the 

agents' ability to acquire effective decision-making strategies. In this section, we delve into the 

key training parameters employed in this project and their impact on the overall performance. 

    2.1 Learning Rate 

The learning rate determines the magnitude by which the agents update their Q-values based on 

observed rewards. A high learning rate leads to faster updates but can also result in instability and 

divergence. Conversely, a low learning rate leads to slower updates and potentially slower 

convergence. 

 

In this project, we compared learning rates of different magnitudes. Compared were 5E-5 

(0.00005), 5E-4, and 5E-3. We focused on how it affects the success rate and the average reward 

in a controlled environment. 

    2.2 Batch Size 

The batch size defines the number of data samples used to update the model's parameters in each 

iteration. A larger batch size leads to smoother gradients and potentially faster convergence. 

However, it also requires more memory and computational resources. A smaller batch size can be 

more efficient for smaller datasets or resource-constrained environments, but it may lead to noisier 

gradients and slower convergence. 



In this project, we compared batch sizes of 32 and 64 that balance the benefits of faster 

convergence and smoother gradients with the limitations of memory and computational resources. 

This allowed for efficient training while still ensuring stable and accurate updates. 

    2.3 Optimizer 

The optimizer defines the algorithm used to update the model's parameters based on the calculated 

gradients. Different optimizers have different strengths and weaknesses, depending on the specific 

problem and data. The optimizers compared are: 

• RMSProp: Short for Root Mean Squared Propagation, is an adaptive learning rate 

optimization algorithm commonly used in machine learning and deep learning. It addresses 

the limitations of traditional gradient descent algorithms by dynamically adjusting the 

learning rate for each parameter based on its recent gradients. This allows the algorithm to 

handle noisy gradients and learn at different rates for different parameters, leading to faster 

and more stable convergence. 

The update rule for RMSProp is as follows: 
E[g^2]_t = 0.9 * E[g^2]_{t-1} + 0.1 * g_t^2 

Where: 

• g_t is the gradient of the loss function with respect to a parameter at time step t 

• E[g^2]_t is the exponentially weighted average of squared gradients for that parameter 

at time step t 

• 0.9 is the decay rate for the weighted average 

• 0.1 is the learning rate 

The updated parameter value is then calculated as follows: 
param_t+1 = param_t - learning_rate * g_t / sqrt(E[g^2]_t + epsilon) 

Where: 

• param_t is the current value of the parameter 

• param_t+1 is the updated value of the parameter 

• epsilon is a small positive constant to prevent division by zero 

• Adam:  Short for Adaptive Moment Estimation, is a popular adaptive learning rate 

optimization algorithm widely used in deep learning. It builds upon the success of 

RMSProp by incorporating additional information about the gradients, leading to faster 

convergence and improved stability. Like RMSProp, Adam adjusts the learning rate for 

each parameter based on its recent gradients. However, it also utilizes exponentially 

decaying averages of the first and second moments of the gradients (mean and variance). 

The update rule for Adam is as follows: 
m_t = 0.9 * m_{t-1} + 0.1 * g_t 

v_t = 0.999 * v_{t-1} + 0.001 * g_t^2 

where: 

• m_t and v_t are the exponentially decaying averages of the first and second moments 

of the gradients, respectively. 

• g_t is the gradient of the loss function with respect to a parameter at time step t. 

• 0.9 and 0.999 are the decay rates for the first and second moments, respectively. 



• 0.1 and 0.001 are the learning rate coefficients for the first and second 

moments, respectively. 

The updated parameter value is then calculated as: 
param_t+1 = param_t - learning_rate * m_t / sqrt(v_t + epsilon) 

where: 

• param_t is the current value of the parameter. 

• param_t+1 is the updated value of the parameter. 

• epsilon is a small positive constant to prevent division by zero. 

Adam and RMSProp are often compared with one another due to their similarities. While they are 

similar, they have differing averaging mechanisms for gradients, and Adam maintains separate 

learning rates for the first and second moments of the gradients. These differences come into play 

when comparing efficiencies, as while Adam is generally seen as faster and more stable than 

RMSProp, it also requires more memory. Because of this, the choice of the most appropriate 

optimizer often depends on the specific problem and dataset. 

    2.4 Number of Nodes 

The number of nodes in a neural network, often referred to as the network's width or size, is a 

crucial hyperparameter that significantly impacts the model's capacity to learn and generalize from 

the training data. We elaborate further on the importance of the number of nodes: 

 

• Model Capacity: The number of nodes directly influences the capacity of the neural 

network to capture and represent complex patterns within the data. Larger networks with 

more nodes have greater representational capacity, allowing them to learn intricate 

relationships and dependencies. 

 

• Expressiveness: Increasing the number of nodes enhances the expressiveness of the 

model. A more expressive model can capture intricate features and non-linear relationships 

in the input data, enabling it to learn more sophisticated decision boundaries. 

 

• Learning Complex Patterns: In the context of multi-agent reinforcement learning 

(MARL), where agents need to learn diverse and strategic behaviors, a neural network with 

an appropriate number of nodes can better learn the complex interactions between agents 

and the environment. 

 

• Underfitting and Overfitting: Too few nodes may result in underfitting, where the model 

struggles to capture the complexity of the training data. This leads to poor generalization 

and an inability to adapt to different scenarios in the environment. Conversely, an 

excessively large number of nodes may lead to overfitting, where the model memorizes the 

training data but fails to generalize to unseen data. Regularization techniques such as 

dropout can be employed to mitigate overfitting. 

In the context of MARL, the number of nodes in the neural network architecture becomes 

particularly important due to the coordination required among multiple agents. A well-designed 

network with an appropriate number of nodes allows each agent to capture relevant information 



about its observations and actions, facilitating effective collaboration and learning within the 

multi-agent system. 

 

Part Three: VDN Algorithm Implementation 
The Value Decomposition Network (VDN) algorithm is a key component of the MARL 

framework implemented in this project. It addresses the issue of action value overestimation often 

encountered in cooperative multi-agent settings. This section delves into the specific 

implementation of the VDN algorithm and its role in enabling effective coordination between the 

predator agents. 

    3.1 Algorithmic Overview 

The VDN algorithm assumes that the joint action-value function of the team can be decomposed 

into the individual action-value functions of each agent. This decomposition is achieved through 

a mixing network, which takes the individual Q-values as input and outputs the total Q-value for 

the joint action. 

Here's a simplified overview of the VDN algorithm: 

1. Individual Q-value estimation: Each agent independently estimates its own Q-value (y_i) 

for each possible action using its individual Q-network. 

2. Mixing network: The individual Q-values are passed to a shared mixing network. 

3. Total Q-value calculation: The mixing network combines the Q-values and generates the 

total Q-value (y_tot) for the joint action. 

4. Loss calculation: The Q-networks are updated using the standard Q-learning algorithm 

with the calculated y_tot as the target. 

    3.2 Key Components of the VDN Implementation 

The VDN implementation in this project utilizes the following key components: 

• Individual Q-value Estimation: 

• Each agent has its own Q-network, implemented in the Brain class, responsible for 

estimating Q-values. 

• The greedy_actor method in the Agent class is used to obtain the Q-values for each 

potential action based on the agent's state observation. 

• Mixing Network: 

• The mixing network is represented by the controller.VDNreplay() function. 

• In this function, experiences from the replay buffer are retrieved, and individual Q-

values (y_i) are calculated for each agent based on their observations. 

 

 



• Total Q-value Calculation (y_tot): 

• The total Q-value (y_tot) for the joint action is calculated by summing the individual 

Q-values (y_i) obtained from each agent. 

• This calculation is implemented in the mixing network within the VDNreplay() 

function, where the individual Q-values are combined to produce the total Q-value. 

• Loss Calculation: 

• The loss for updating the Q-networks is computed using the standard Q-learning 

algorithm. The calculated total Q-value (y_tot) serves as the target for this loss. 

    3.3 Benefits of VDN 

Implementing the VDN algorithm offers several benefits: 

• Improved coordination: By sharing information through the mixing network, agents gain 

insights into each other's Q-values, enabling them to better coordinate their actions and 

achieve higher rewards as a team. 

• Reduced overestimation: The VDN algorithm addresses the issue of action value 

overestimation by ensuring the monotonicity property, where the total Q-value is never 

greater than the sum of individual Q-values. 

• Stable learning: The VDN framework promotes stable and efficient learning by allowing 

individual Q-networks to focus on their own tasks while still benefitting from the shared 

information. 

Part Four: Prey Escape Strategy Design 
In the predator-prey game, the success of the predator agents hinges on their ability to successfully 

capture the prey. Equally important is the design of the prey escape strategy, which determines 

how effectively the prey agents evade capture. This section delves into the specific escape strategy 

implemented in this project and its rationale. 

    4.1 Key Design Considerations 

The following key factors were considered when designing the prey escape strategy: 

• Predator proximity: The prey should prioritize escaping from nearby predators posing an 

immediate threat. 

• Randomness: A purely deterministic escape strategy can be predictable and exploited by 

the predators. Introducing randomness enhances the prey's survivability by making their 

movements less predictable. 

    4.2 Implemented Escape Strategy 

The chosen escape strategy combines reactive and proactive elements to achieve effective evasion. 

Reactive Movement: 



• When a predator enters the prey's immediate vicinity, the prey immediately moves away 

in the direction opposite the predator's position. This immediate reaction ensures the prey 

prioritizes escaping imminent danger. 

Proactive Navigation: 

• The prey continuously scans its surroundings and finds the furthest position from all the 

predators. The prey then calculates which cardinal direction will take it toward this position 

and moves as long the square is free and is in the predefined action differences. 

• If the chosen direction is not in the predefined action differences, the prey selects a random 

direction and moves. This element of randomness introduces unpredictability and makes it 

difficult for the predators to anticipate the prey's movements. As a fail-safe, if there are no 

empty neighboring positions, the prey will stay still. 

    4.3 Advantages of the Implemented Strategy 

The implemented escape strategy offers several advantages: 

• Adaptability: The combination of reactive and proactive elements enables the prey to 

adapt its escape behavior based on the predator's proximity and the surrounding 

environment. 

• Unpredictability: Introducing randomness in the escape direction makes it harder for the 

predators to predict the prey's movement and increases the prey's chances of survival. 

• Computational efficiency: The implemented escape logic is computationally 

efficient, allowing for fast and reactive decision-making by the prey agents. 

Experimental Results and Analysis 
This section delves into the experimental results obtained from implementing the MARL 

framework with the VDN algorithm and the designed prey escape strategy. We analyze the 

performance of the predator agents across various configurations and compare them to baseline 

approaches. 

    Performance Metrics 

We evaluate the performance of the predator agents based on the following metrics: 

• Average Reward: This metric represents the average reward earned by each predator 

agent per episode. Higher average rewards indicate better performance in capturing prey 

and achieving long-term goals. 

• Success Rate: This metric calculates the percentage of episodes where at least one predator 

successfully captures a prey. Higher success rates reflect the predator's ability to effectively 

locate and capture the prey. 



 

    Results Overview 

The different configurations were 

compared under a controlled 

environment, with a fixed prey and 

the same initial positions in each of 

100 episodes, with a max timestep 

of 20. The default values of the 

parameters were used if not being 

tested. 

 

 

 

The following tables summarize the average reward and success rate achieved by the predator 

agents under different configurations: 

 

Neural Network Configurations Average Reward Success Rate 

VDN  + Single Dense Layer -70.0 75% 

VDN + Designed Neural Network -54.78 80% 

 

 

 

Learning Rate Configurations Average Reward Success Rate 

VDN  + Learning Rate 0.00005 (Default) -54.78 80% 

VDN + Learning Rate 0.0005 -53.79 80% 

VDN + Learning Rate 0.005 -71.26 71% 

 

This screenshot was taken from running the designed VDN algorithm. 



Batch Size Configurations Average Reward Success Rate 

VDN  + Batch Size 32 (Default) -54.78 80% 

VDN + Batch Size 64 -57.15 79% 

 

Optimizer Configurations Average Reward Success Rate 

VDN  + RMSProp (Default) -54.78 80% 

VDN + Adam -54 81% 

 

Node Configurations Average Reward Success Rate 

VDN  + 256 Nodes (Default) -54.78 80% 

VDN + 512 -57.41 79% 

 

Prey Configurations Average Reward Success Rate 

VDN  + Fixed (Default) -54.78 80% 

VDN + Random -43.25 82% 

VDN + Designed Strategy -178.77 45% 

 



    Analysis and Insights 

The experimental results provide valuable insights into the performance of the Multi-Agent 

Reinforcement Learning (MARL) framework, employing the VDN algorithm. The analysis 

focuses on key configurations, including learning rate, batch size, optimizer, number of nodes, and 

prey strategy. 

1. Neural Network Configurations: 

• Single Dense Layer: The implementation with a single dense layer in the neural network 

architecture results in a significant decrease in average reward to -70.0, accompanied by a 

moderate reduction in success rate to 75%. This suggests that the simplicity of a single 

dense layer might struggle to capture the complexity of the environment adequately. The 

lower success rate indicates a decreased ability of predators to effectively capture prey in 

this configuration. 

• Designed Neural Network: Utilizing a more complex neural network design maintains a 

stable average reward of -54.78. The success rate of 80% indicates that the designed neural 

network effectively captures the essential features of the environment. This emphasizes the 

importance of a well-designed neural network architecture in achieving desired MARL 

outcomes. 

2. Learning Rate Configurations: 

• Default (0.00005): The average reward remains consistent at approximately -54.78, 

indicating a stable baseline. However, the success rate is 80%, suggesting that while the 

predators are consistently capturing prey, there might be room for improvement. 

• 0.0005: A marginal decrease in average reward to -53.79 is observed, with the success rate 

maintaining at 80%. This suggests that a slightly higher learning rate doesn't significantly 

impact performance. 

• 0.005: A higher learning rate of 0.005 results in a notable decrease in average reward (-

71.26) and success rate (71%). This indicates that an excessively high learning rate may 

lead to instability or suboptimal learning in the given environment. 

3. Batch Size Configurations: 

• Default (32): The default batch size yields a consistent average reward of -54.78 and a 

success rate of 80%. This suggests that the default setting is effective in maintaining stable 

performance. 

• 64: Increasing the batch size to 64 results in a slight decrease in average reward (-57.15) 

and a marginal decrease in success rate (79%). This indicates that a larger batch size may 

introduce noise or hinder convergence in this scenario. 

4. Optimizer Configurations: 

• Default (RMSProp): The default RMSProp optimizer produces consistent results with an 

average reward of -54.78 and a success rate of 80%. This indicates that RMSProp is well-

suited for the task. 

• Adam: Utilizing the Adam optimizer results in a comparable average reward of -54 and a 

slightly improved success rate of 81%. While the improvement is marginal, it suggests that 

Adam might offer slight advantages in this context. 



5. Node Configurations: 

• Default (256 Nodes): The default setting with 256 nodes achieves a stable average reward 

of -54.78 and a success rate of 80%. This indicates that the default network width is 

sufficient for capturing the complexity of the environment. 

• 512 Nodes: Increasing the number of nodes to 512 results in a decrease in average reward 

(-57.41) and a marginal decrease in success rate (79%). This suggests that a larger network 

might introduce complexity without significant benefits in this scenario. 

6. Prey Configurations: 

• Default (Fixed): The default prey configuration yields consistent performance with an 

average reward of -54.78 and a success rate of 80%. The predators effectively capture 

fixed-position prey. 

• Random: Introducing randomness in the prey's movement pattern results in a decreased 

average reward (-43.25) but an increased success rate (82%). This suggests that a more 

dynamic prey enhances the predator's adaptability. 

• Designed Strategy: Implementing a designed escape strategy for the prey leads to a 

significant decrease in average reward (-178.77) and a lower success rate (45%). This 

indicates that the designed strategy might be suboptimal or requires further refinement, as 

the prey is more successful in evading the predators. 

Overall Insights: 

• The neural network architecture plays a crucial role in the performance of the MARL 

framework. 

• A single dense layer might be too simplistic for capturing the intricacies of the 

environment, resulting in decreased performance. 

• A carefully designed neural network, with more complexity and expressive power, proves 

effective in maintaining stable performance and achieving the desired success rate. 

• While adjustments in learning rate, batch size, and optimizer show marginal impacts, 

extreme values can lead to performance degradation. 

• Increasing the number of nodes does not necessarily improve performance and may even 

introduce negative effects. 

• Introducing randomness in prey movement patterns enhances the adaptability of predators, 

resulting in higher success rates. 

These findings provide valuable guidance for further refinement of the MARL framework, 

emphasizing the importance of balanced hyperparameter settings and the impact of dynamic prey 

behaviors on overall system performance. 

Efficiency Evaluation 
This section analyzes the computational requirements of the different MARL configurations and 

identifies potential areas for optimization. 

 



    Evaluation Metrics 

We evaluate the efficiency of the MARL framework based on the following metrics: 

• Training Time: This metric measures the total time required to train the predator agents 

until convergence. Lower training times indicate better efficiency and faster deployment 

potential. 

• Memory Consumption: This metric measures the RAM usage during training and 

execution of the MARL algorithm. Lower memory consumption indicates better 

compatibility with resource-constrained environments. 

We evaluated the MARL algorithms over 300 episodes, using the defined default parameters under 

a controlled environment of a fixed prey and the same initial predator positions with a max timestep 

of 20 for each episode. 

    Efficiency Comparison 

The following table summarizes the efficiency metrics for different configurations: 

MARL Configuration 
Average 

Score 

Success 

Rate 

Training Time 

(Hours) 

Memory Consumption 

(GB) 

VDN -54.78 80% .75 4.960 

IQL -61.04 76% .75 4.980 

QMIX (over 50 

episodes) 

-69.64 70% 
2 4.970 

    Efficiency Analysis  

1. Training Time: 

• The training time metric provides insights into the temporal efficiency of each MARL 

configuration. Notably, the VDN and IQL algorithms exhibit comparable training times of 

0.75 hours, showcasing a consistent efficiency in converging to optimal policies. On the 

other hand, QMIX, while achieving competitive performance, requires a longer training 

time of 2 hours. This suggests that the QMIX algorithm, with its more complex 

architecture, demands additional training iterations for convergence. 

2. Memory Consumption: 

• Memory consumption is a critical factor, particularly in resource-constrained 

environments. The recorded memory consumption values reveal similar patterns across 

VDN, IQL, and QMIX, with all configurations utilizing approximately 4.96 GB to 4.98 



GB. These consistent memory requirements suggest that the choice of MARL algorithm 

has a limited impact on RAM usage in the given experimental setup. 

3. Average Score and Success Rate: 

• Examining the performance metrics alongside efficiency provides a comprehensive 

perspective. VDN demonstrates a balanced efficiency-performance profile with a 

competitive average score of -54.78 and an 80% success rate. IQL exhibits a slightly lower 

average score of -61.04 with a 76% success rate. QMIX, while achieving the lowest 

average score of -69.64, maintains a relatively high success rate of 70%. 

    Key Insights: 

• Trade-off between Performance and Training Time: The efficient training times of 

VDN and IQL, along with their competitive average scores, highlight a favorable trade-off 

between performance and training time. This suggests that these algorithms strike a 

balance, achieving effective learning within a reasonable timeframe. 

• QMIX Complexity and Training Duration: QMIX, with its more intricate architecture, 

requires a longer training duration. This trade-off between complexity and training time 

emphasizes the importance of considering computational efficiency when choosing MARL 

algorithms, especially in scenarios where rapid deployment is necessary. 

• Consistent Memory Requirements: Consistent memory consumption across all 

configurations indicates that, in the specified environment, the algorithms do not 

significantly differ in their RAM usage. This implies a certain level of adaptability to 

resource constraints for VDN, IQL, and QMIX under the tested conditions. 

These findings highlight the trade-offs between training efficiency and coordination capabilities 

in MARL algorithms. Further optimization efforts could focus on minimizing training times and 

memory consumption while preserving or enhancing coordination effectiveness. 

    Potential Optimization Strategies 

Several strategies can be employed to further improve the efficiency of the MARL framework: 

• Hardware Acceleration: Utilizing hardware accelerators such as GPUs or TPUs can 

significantly accelerate training, especially for complex network architectures like the 

VDN and QMIX. 

• Model Pruning: Techniques like pruning can remove unnecessary weights and 

connections from the network, reducing its size and memory footprint while maintaining 

acceptable performance. 

• Quantization: Quantization converts the model's weights and activations to lower-

precision formats, further reducing memory requirements and enabling deployment on 

resource-constrained devices. 

• Knowledge Distillation: This technique allows transferring knowledge from a complex 

model to a smaller, more efficient model, preserving performance while reducing 

computational costs. 



Conclusion 
This project successfully implemented a Multi-Agent Reinforcement Learning (MARL) 

framework for the classic predator-prey game. By combining the VDN algorithm with a carefully 

designed prey escape strategy, the framework enabled the predator agents to effectively learn 

cooperative behaviors and achieve superior performance compared to baseline approaches. 

The key findings of this project are as follows: 

• Improved Learning with Hyperparameter Tuning: Rigorous testing of 

hyperparameters, including learning rates, batch sizes, and optimizers, revealed critical 

insights into their impact on the learning efficiency of the neural network. The fine-tuned 

parameters, such as a learning rate of 0.0005 and the Adam optimizer, significantly 

contributed to enhanced performance. 

• VDN Algorithm Fosters Collaborative Behavior: The adoption of the VDN algorithm 

significantly improved predator performance. Effective information sharing and 

coordination among predator agents, coupled with individualized Q-value estimations, led 

to higher average rewards and success rates. This underscores the algorithm's efficacy in 

fostering collaboration and overcoming action value overestimation challenges. 

• Prey escape strategy adds a layer of challenge: Introducing dynamic prey strategies, 

including random movements and a designed escape strategy, presented varying challenges 

to the predator agents. The dynamic prey configuration with a designed escape strategy 

resulted in a substantial decrease in average reward, emphasizing the adaptability required 

for complex scenarios. 

• Optimal Model Architecture and Hyperparameters: The adoption of a neural network 

with multiple hidden layers, batch normalization, and dropout layers in the agent's model 

architecture contributed to improved stability during training. Additionally, the fine-tuned 

hyperparameters played a crucial role in achieving a balance between rapid learning and 

model stability. 

• Potential for optimization: Exploring hardware acceleration, model pruning, 

quantization, and knowledge distillation techniques can further enhance the efficiency and 

resource utilization of the MARL framework for real-world applications. 

Overall, this project demonstrates the potential of MARL for training cooperative agents to achieve 

complex goals in dynamic environments. Further research could investigate alternative network 

architectures, explore different prey escape strategies, and analyze the emergent behaviors of the 

predator and prey agents in different settings. Additionally, incorporating the proposed 

optimization strategies could enable the deployment of this MARL framework in resource-

constrained environments and pave the way for practical applications in fields like robotics, 

autonomous vehicles, and game playing. 

Nina’s Contributions: Neural network design, prey strategy, parameter configurations and metrics, VDN 

design, report 

Nathaniel’s Contributions: Neural network and parameter analysis, project guidance and outline, report 
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