
Neural Networks

ECE 553

Project 2

Multi-agent Reinforcement Learning
https://github.com/natejoseph/marl-predator-prey

Nathaniel Joseph
College of Engineering, Frost Institute for Data Science and

Computing

Nina Phan
Miami Herbert Business School, College of Arts and Sciences

Professor Mingzhe Chen

University of Miami

December 2023

https://github.com/natejoseph/marl-predator-prey

Introduction
Multi-agent reinforcement learning (MARL) is a subfield of artificial intelligence concerned

with training multiple intelligent agents to learn and make decisions collaboratively in complex

environments. In traditional reinforcement learning, a single agent interacts with an

environment and receives rewards based on its actions. The agent then learns to maximize its long-

term rewards by adapting its behavior based on these rewards. However, in MARL, multiple agents

are present, and their actions can influence each other. This introduces additional challenges, as

each agent must learn not only how to act optimally in the environment but also how to coordinate

its actions with the other agents to achieve a common goal.

MARL has the potential to revolutionize a wide range

of applications, including robotics, autonomous

vehicles, game playing, and even economic modeling.

This project aims to explore and implement MARL

techniques in the context of a predator and prey game.

In this game, one or more predator agents must learn to

capture prey agents who may be avoiding capture

themselves. This simple yet challenging environment

provides a valuable testbed for investigating different

MARL algorithms and strategies.

The motivation for this project stems from the belief

that MARL has the potential to significantly improve

the performance of intelligent agents in cooperative

settings. By understanding how to train multiple agents to

work together effectively, we can create new and

innovative solutions to complex real-world problems.

Requirements

 Neural Network Design

The design of the neural network is crucial for the success of this project. The network must be

able to effectively represent the state space and action space of the environment. Additionally, the

network should be able to learn and adapt to the changing environment and the evolving strategies

of the prey.

Here are some specific requirements for the neural network:

• Input layer: The input layer should accept information about the current state of the

environment, including the positions of the predators and the prey.

• Hidden layers: The hidden layers should be able to extract features from the input data

and learn the relationships between different features.

• Output layer: The output layer should produce a set of action probabilities, one for each

possible action that a predator can take.

https://www.mdpi.com/2076-3417/11/22/10870

The specific size and architecture of the neural network will be determined through

experimentation. We will experiment with different network architectures and hyperparameters

to find the best-performing network for this task.

 Parameter Selection

The selection of hyperparameters, such as the learning rate, batch size, and optimizer can also

significantly impact the performance of the neural network. We will test different values of these

hyperparameters and compare how they affect the network’s learning efficiency.

Here are some specific requirements for hyperparameter selection:

• Learning Rate:

• Definition: The learning rate determines the magnitude of weight updates in

response to new data. Too small a learning rate may result in slow learning, while

an excessively large learning rate can lead to instability.

• Impact: The learning rate significantly influences the convergence speed and

stability of the training process.

• Batch Size:

• Definition: The batch size represents the number of samples used to update the

network's weights in each training iteration. A larger batch size can improve

training efficiency but may increase the risk of overfitting.

• Impact: Batch size affects the trade-off between computational efficiency and

model generalization.

• Optimizers:

• The optimizer is a crucial component in training neural networks. Two common

optimizers are Adam and RMSProp.

• Adam: Adaptive Moment Estimation, adjusts the learning rates of each

parameter individually, providing adaptive control.

• RMSProp: Root Mean Square Propagation, adjusts the learning rates based on

the moving average of squared gradients, contributing to more stable

convergence.

• Number of Nodes:

• Definition: The number of nodes refers to the size of the hidden layers in the neural

network. It directly impacts the model’s capacity to capture complex patterns in the

data.

• Impact: Adjusting the number of nodes influences the model’s ability to represent

intricate relationships in the data.

 VDN Algorithm Implementation

We will implement the VDN (Value-Decomposition Network) algorithm, which is a popular

MARL algorithm that is effective in various tasks. VDN is a value-based algorithm that learns a

value function for each state-action pair. The value function indicates the expected long-term

reward that a predator can expect to receive by taking a particular action in a particular state.

 Prey Escape Strategy Design

Given that the prey does not actively learn, it becomes imperative to design an escape strategy

that enables the prey to navigate the environment strategically, evading capture from the learning

predators. The escape strategy should not only be effective against various predator strategies but

also possess adaptability to diverse situations.

Here are some specific requirements for the prey escape strategy:

• Random Movement:

o Description: The prey will exhibit random movements, introducing an

unpredictable element to its escape strategy.

o Rationale: Random movement adds an element of uncertainty, challenging the

adaptability of the predator agents.

• Stays:

o Description: The prey has the option to remain stationary, introducing a contrasting

behavior to its escape strategy.

o Rationale: This stationary behavior serves as a baseline scenario, enabling the

predators to understand and adapt to a situation where the prey is not actively

evading capture. By introducing such a behavior, the learning agents (predators)

can observe the consequences of their actions in a more predictable setting.

• Designed Strategy

o Description: The prey employs a designed strategy to move farthest away from the

nearest predator and move in the opposite direction of any adjacent predator.

o Rationale: This designed strategy leverages a combination of distance-based

evasion and opposite movements to outmaneuver nearby predators systematically.

By following these requirements, we will ensure that the neural network, hyperparameters, VDN

algorithm, and prey escape strategy are designed and implemented effectively. This will help us

to achieve our goal of training a team of predators to capture a single prey using MARL.

Part One: Neural Network Design
The neural network architecture is a pivotal component in our pursuit of effective reinforcement

learning algorithms for the predator-prey scenario. The original implementation featured a

straightforward design with a single dense layer, mapping the state information to action

probabilities using a linear activation function. In hopes of improved performance, we introduced

a more complex, multilayer perceptron (MLP) neural network architecture.

 1.1 Original Architecture Overview

The initial neural network encapsulated within the Brain.build_model() function in agent.py,

exhibited simplicity with a linear activation function in the output layer. The output layer

contains neurons equal to the number of available actions the predator can take (move up, down,

left, right, and stay). Each neuron in this layer represents the Q-value of the corresponding action,

indicating the expected reward associated with taking that action in the current state. This

architecture while computationally less expensive, suffers from a few drawbacks:

• Reduced Performance: Experiments have shown that the simple dense layer approach

often leads to lower overall performance compared to the MLP architecture. This is

because the single hidden layer may not be able to effectively represent the complex

relationships within the environment.

• Inability to Learn Complex Behaviors: The simpler architecture may struggle to learn

certain complex behaviors, such as coordinated hunting strategies, essential for successful

predator performance.

 1.2 Enhanced Architecture

To elevate the model's representational capacity, we extended the architecture by introducing

additional layers and complexity. The modifications include the incorporation of multiple hidden

layers, each followed by batch normalization and dropout for regularization. Additionally, we

adopted the rectified linear unit (ReLU) activation function for its ability to capture non-

linearities in the data.

This revised architecture aims to capture intricate patterns in the environment, facilitating

improved decision-making by the predator agents.

 1.2.1 Batch Normalization and Dropout Layers

Batch normalization and dropout layers play crucial roles in enhancing the robustness and

generalization capabilities of neural networks.

• Batch Normalization: This layer normalizes the input of a neural network layer by

adjusting and scaling the activations. It helps mitigate the internal covariate shift,

promoting stable and faster convergence during training.

• Dropout: Dropout is a regularization technique that aids in preventing overfitting. During

training, randomly selected neurons are "dropped out" or omitted from the forward and

backward passes. This forces the network to learn more robust features and reduces

reliance on specific neurons, contributing to better generalization.

By incorporating batch normalization and dropout layers in the proposed architecture, we aim to

improve the overall learning dynamics and prevent the neural network from overfitting specific

patterns in the training data. These additions contribute to the adaptability and efficiency of the

model in learning the complex dynamics of the predator-prey environment.

 1.2.2 Rationale for Choice

Several factors informed the decision to use this specific neural network architecture:

• Complexity of Environment: The predator and prey game, while conceptually

simple, presents a dynamic and complex environment due to the presence of multiple

agents and the need for coordinated action. The chosen MLP architecture, with its multiple

hidden layers, ReLU activation functions, and batch normalizations provides sufficient

capacity to capture the intricacies of this environment and learn effective decision-making

strategies.

• Performance Objectives: The project's primary objective is to train the predator agents to

efficiently capture prey while maximizing their long-term reward. The selected MLP

architecture, with its focus on Q-value estimation and action selection, aligns well with this

objective by allowing the agents to learn and execute actions that lead to the highest

expected rewards.

• Computational Constraints: While a more complex network architecture might offer

potentially higher performance, it would also require significantly more computational

resources for training and execution. The chosen MLP architecture strikes a balance

between performance and efficiency, allowing for effective learning within the available

computational resources.

 1.3 Training Parameter Considerations

As we introduced architectural enhancements, the configuration of training parameters became

paramount. The learning rate, batch size, and optimizer selection were explored to ensure the

model's effective adaptation to the environment. The following sections will delve into the

specifics of these parameter adjustments and their impact on the learning process.

Part Two: Parameter Selections
The selection of appropriate training parameters plays a crucial role in the performance of the

MARL algorithm. These parameters guide the learning process and significantly influence the

agents' ability to acquire effective decision-making strategies. In this section, we delve into the

key training parameters employed in this project and their impact on the overall performance.

 2.1 Learning Rate

The learning rate determines the magnitude by which the agents update their Q-values based on

observed rewards. A high learning rate leads to faster updates but can also result in instability and

divergence. Conversely, a low learning rate leads to slower updates and potentially slower

convergence.

In this project, we compared learning rates of different magnitudes. Compared were 5E-5

(0.00005), 5E-4, and 5E-3. We focused on how it affects the success rate and the average reward

in a controlled environment.

 2.2 Batch Size

The batch size defines the number of data samples used to update the model's parameters in each

iteration. A larger batch size leads to smoother gradients and potentially faster convergence.

However, it also requires more memory and computational resources. A smaller batch size can be

more efficient for smaller datasets or resource-constrained environments, but it may lead to noisier

gradients and slower convergence.

In this project, we compared batch sizes of 32 and 64 that balance the benefits of faster

convergence and smoother gradients with the limitations of memory and computational resources.

This allowed for efficient training while still ensuring stable and accurate updates.

 2.3 Optimizer

The optimizer defines the algorithm used to update the model's parameters based on the calculated

gradients. Different optimizers have different strengths and weaknesses, depending on the specific

problem and data. The optimizers compared are:

• RMSProp: Short for Root Mean Squared Propagation, is an adaptive learning rate

optimization algorithm commonly used in machine learning and deep learning. It addresses

the limitations of traditional gradient descent algorithms by dynamically adjusting the

learning rate for each parameter based on its recent gradients. This allows the algorithm to

handle noisy gradients and learn at different rates for different parameters, leading to faster

and more stable convergence.

The update rule for RMSProp is as follows:
E[g^2]_t = 0.9 * E[g^2]_{t-1} + 0.1 * g_t^2

Where:

• g_t is the gradient of the loss function with respect to a parameter at time step t

• E[g^2]_t is the exponentially weighted average of squared gradients for that parameter

at time step t

• 0.9 is the decay rate for the weighted average

• 0.1 is the learning rate

The updated parameter value is then calculated as follows:
param_t+1 = param_t - learning_rate * g_t / sqrt(E[g^2]_t + epsilon)

Where:

• param_t is the current value of the parameter

• param_t+1 is the updated value of the parameter

• epsilon is a small positive constant to prevent division by zero

• Adam: Short for Adaptive Moment Estimation, is a popular adaptive learning rate

optimization algorithm widely used in deep learning. It builds upon the success of

RMSProp by incorporating additional information about the gradients, leading to faster

convergence and improved stability. Like RMSProp, Adam adjusts the learning rate for

each parameter based on its recent gradients. However, it also utilizes exponentially

decaying averages of the first and second moments of the gradients (mean and variance).

The update rule for Adam is as follows:
m_t = 0.9 * m_{t-1} + 0.1 * g_t

v_t = 0.999 * v_{t-1} + 0.001 * g_t^2

where:

• m_t and v_t are the exponentially decaying averages of the first and second moments

of the gradients, respectively.

• g_t is the gradient of the loss function with respect to a parameter at time step t.

• 0.9 and 0.999 are the decay rates for the first and second moments, respectively.

• 0.1 and 0.001 are the learning rate coefficients for the first and second

moments, respectively.

The updated parameter value is then calculated as:
param_t+1 = param_t - learning_rate * m_t / sqrt(v_t + epsilon)

where:

• param_t is the current value of the parameter.

• param_t+1 is the updated value of the parameter.

• epsilon is a small positive constant to prevent division by zero.

Adam and RMSProp are often compared with one another due to their similarities. While they are

similar, they have differing averaging mechanisms for gradients, and Adam maintains separate

learning rates for the first and second moments of the gradients. These differences come into play

when comparing efficiencies, as while Adam is generally seen as faster and more stable than

RMSProp, it also requires more memory. Because of this, the choice of the most appropriate

optimizer often depends on the specific problem and dataset.

 2.4 Number of Nodes

The number of nodes in a neural network, often referred to as the network's width or size, is a

crucial hyperparameter that significantly impacts the model's capacity to learn and generalize from

the training data. We elaborate further on the importance of the number of nodes:

• Model Capacity: The number of nodes directly influences the capacity of the neural

network to capture and represent complex patterns within the data. Larger networks with

more nodes have greater representational capacity, allowing them to learn intricate

relationships and dependencies.

• Expressiveness: Increasing the number of nodes enhances the expressiveness of the

model. A more expressive model can capture intricate features and non-linear relationships

in the input data, enabling it to learn more sophisticated decision boundaries.

• Learning Complex Patterns: In the context of multi-agent reinforcement learning

(MARL), where agents need to learn diverse and strategic behaviors, a neural network with

an appropriate number of nodes can better learn the complex interactions between agents

and the environment.

• Underfitting and Overfitting: Too few nodes may result in underfitting, where the model

struggles to capture the complexity of the training data. This leads to poor generalization

and an inability to adapt to different scenarios in the environment. Conversely, an

excessively large number of nodes may lead to overfitting, where the model memorizes the

training data but fails to generalize to unseen data. Regularization techniques such as

dropout can be employed to mitigate overfitting.

In the context of MARL, the number of nodes in the neural network architecture becomes

particularly important due to the coordination required among multiple agents. A well-designed

network with an appropriate number of nodes allows each agent to capture relevant information

about its observations and actions, facilitating effective collaboration and learning within the

multi-agent system.

Part Three: VDN Algorithm Implementation
The Value Decomposition Network (VDN) algorithm is a key component of the MARL

framework implemented in this project. It addresses the issue of action value overestimation often

encountered in cooperative multi-agent settings. This section delves into the specific

implementation of the VDN algorithm and its role in enabling effective coordination between the

predator agents.

 3.1 Algorithmic Overview

The VDN algorithm assumes that the joint action-value function of the team can be decomposed

into the individual action-value functions of each agent. This decomposition is achieved through

a mixing network, which takes the individual Q-values as input and outputs the total Q-value for

the joint action.

Here's a simplified overview of the VDN algorithm:

1. Individual Q-value estimation: Each agent independently estimates its own Q-value (y_i)

for each possible action using its individual Q-network.

2. Mixing network: The individual Q-values are passed to a shared mixing network.

3. Total Q-value calculation: The mixing network combines the Q-values and generates the

total Q-value (y_tot) for the joint action.

4. Loss calculation: The Q-networks are updated using the standard Q-learning algorithm

with the calculated y_tot as the target.

 3.2 Key Components of the VDN Implementation

The VDN implementation in this project utilizes the following key components:

• Individual Q-value Estimation:

• Each agent has its own Q-network, implemented in the Brain class, responsible for

estimating Q-values.

• The greedy_actor method in the Agent class is used to obtain the Q-values for each

potential action based on the agent's state observation.

• Mixing Network:

• The mixing network is represented by the controller.VDNreplay() function.

• In this function, experiences from the replay buffer are retrieved, and individual Q-

values (y_i) are calculated for each agent based on their observations.

• Total Q-value Calculation (y_tot):

• The total Q-value (y_tot) for the joint action is calculated by summing the individual

Q-values (y_i) obtained from each agent.

• This calculation is implemented in the mixing network within the VDNreplay()

function, where the individual Q-values are combined to produce the total Q-value.

• Loss Calculation:

• The loss for updating the Q-networks is computed using the standard Q-learning

algorithm. The calculated total Q-value (y_tot) serves as the target for this loss.

 3.3 Benefits of VDN

Implementing the VDN algorithm offers several benefits:

• Improved coordination: By sharing information through the mixing network, agents gain

insights into each other's Q-values, enabling them to better coordinate their actions and

achieve higher rewards as a team.

• Reduced overestimation: The VDN algorithm addresses the issue of action value

overestimation by ensuring the monotonicity property, where the total Q-value is never

greater than the sum of individual Q-values.

• Stable learning: The VDN framework promotes stable and efficient learning by allowing

individual Q-networks to focus on their own tasks while still benefitting from the shared

information.

Part Four: Prey Escape Strategy Design
In the predator-prey game, the success of the predator agents hinges on their ability to successfully

capture the prey. Equally important is the design of the prey escape strategy, which determines

how effectively the prey agents evade capture. This section delves into the specific escape strategy

implemented in this project and its rationale.

 4.1 Key Design Considerations

The following key factors were considered when designing the prey escape strategy:

• Predator proximity: The prey should prioritize escaping from nearby predators posing an

immediate threat.

• Randomness: A purely deterministic escape strategy can be predictable and exploited by

the predators. Introducing randomness enhances the prey's survivability by making their

movements less predictable.

 4.2 Implemented Escape Strategy

The chosen escape strategy combines reactive and proactive elements to achieve effective evasion.

Reactive Movement:

• When a predator enters the prey's immediate vicinity, the prey immediately moves away

in the direction opposite the predator's position. This immediate reaction ensures the prey

prioritizes escaping imminent danger.

Proactive Navigation:

• The prey continuously scans its surroundings and finds the furthest position from all the

predators. The prey then calculates which cardinal direction will take it toward this position

and moves as long the square is free and is in the predefined action differences.

• If the chosen direction is not in the predefined action differences, the prey selects a random

direction and moves. This element of randomness introduces unpredictability and makes it

difficult for the predators to anticipate the prey's movements. As a fail-safe, if there are no

empty neighboring positions, the prey will stay still.

 4.3 Advantages of the Implemented Strategy

The implemented escape strategy offers several advantages:

• Adaptability: The combination of reactive and proactive elements enables the prey to

adapt its escape behavior based on the predator's proximity and the surrounding

environment.

• Unpredictability: Introducing randomness in the escape direction makes it harder for the

predators to predict the prey's movement and increases the prey's chances of survival.

• Computational efficiency: The implemented escape logic is computationally

efficient, allowing for fast and reactive decision-making by the prey agents.

Experimental Results and Analysis
This section delves into the experimental results obtained from implementing the MARL

framework with the VDN algorithm and the designed prey escape strategy. We analyze the

performance of the predator agents across various configurations and compare them to baseline

approaches.

 Performance Metrics

We evaluate the performance of the predator agents based on the following metrics:

• Average Reward: This metric represents the average reward earned by each predator

agent per episode. Higher average rewards indicate better performance in capturing prey

and achieving long-term goals.

• Success Rate: This metric calculates the percentage of episodes where at least one predator

successfully captures a prey. Higher success rates reflect the predator's ability to effectively

locate and capture the prey.

 Results Overview

The different configurations were

compared under a controlled

environment, with a fixed prey and

the same initial positions in each of

100 episodes, with a max timestep

of 20. The default values of the

parameters were used if not being

tested.

The following tables summarize the average reward and success rate achieved by the predator

agents under different configurations:

Neural Network Configurations Average Reward Success Rate

VDN + Single Dense Layer -70.0 75%

VDN + Designed Neural Network -54.78 80%

Learning Rate Configurations Average Reward Success Rate

VDN + Learning Rate 0.00005 (Default) -54.78 80%

VDN + Learning Rate 0.0005 -53.79 80%

VDN + Learning Rate 0.005 -71.26 71%

This screenshot was taken from running the designed VDN algorithm.

Batch Size Configurations Average Reward Success Rate

VDN + Batch Size 32 (Default) -54.78 80%

VDN + Batch Size 64 -57.15 79%

Optimizer Configurations Average Reward Success Rate

VDN + RMSProp (Default) -54.78 80%

VDN + Adam -54 81%

Node Configurations Average Reward Success Rate

VDN + 256 Nodes (Default) -54.78 80%

VDN + 512 -57.41 79%

Prey Configurations Average Reward Success Rate

VDN + Fixed (Default) -54.78 80%

VDN + Random -43.25 82%

VDN + Designed Strategy -178.77 45%

 Analysis and Insights

The experimental results provide valuable insights into the performance of the Multi-Agent

Reinforcement Learning (MARL) framework, employing the VDN algorithm. The analysis

focuses on key configurations, including learning rate, batch size, optimizer, number of nodes, and

prey strategy.

1. Neural Network Configurations:

• Single Dense Layer: The implementation with a single dense layer in the neural network

architecture results in a significant decrease in average reward to -70.0, accompanied by a

moderate reduction in success rate to 75%. This suggests that the simplicity of a single

dense layer might struggle to capture the complexity of the environment adequately. The

lower success rate indicates a decreased ability of predators to effectively capture prey in

this configuration.

• Designed Neural Network: Utilizing a more complex neural network design maintains a

stable average reward of -54.78. The success rate of 80% indicates that the designed neural

network effectively captures the essential features of the environment. This emphasizes the

importance of a well-designed neural network architecture in achieving desired MARL

outcomes.

2. Learning Rate Configurations:

• Default (0.00005): The average reward remains consistent at approximately -54.78,

indicating a stable baseline. However, the success rate is 80%, suggesting that while the

predators are consistently capturing prey, there might be room for improvement.

• 0.0005: A marginal decrease in average reward to -53.79 is observed, with the success rate

maintaining at 80%. This suggests that a slightly higher learning rate doesn't significantly

impact performance.

• 0.005: A higher learning rate of 0.005 results in a notable decrease in average reward (-

71.26) and success rate (71%). This indicates that an excessively high learning rate may

lead to instability or suboptimal learning in the given environment.

3. Batch Size Configurations:

• Default (32): The default batch size yields a consistent average reward of -54.78 and a

success rate of 80%. This suggests that the default setting is effective in maintaining stable

performance.

• 64: Increasing the batch size to 64 results in a slight decrease in average reward (-57.15)

and a marginal decrease in success rate (79%). This indicates that a larger batch size may

introduce noise or hinder convergence in this scenario.

4. Optimizer Configurations:

• Default (RMSProp): The default RMSProp optimizer produces consistent results with an

average reward of -54.78 and a success rate of 80%. This indicates that RMSProp is well-

suited for the task.

• Adam: Utilizing the Adam optimizer results in a comparable average reward of -54 and a

slightly improved success rate of 81%. While the improvement is marginal, it suggests that

Adam might offer slight advantages in this context.

5. Node Configurations:

• Default (256 Nodes): The default setting with 256 nodes achieves a stable average reward

of -54.78 and a success rate of 80%. This indicates that the default network width is

sufficient for capturing the complexity of the environment.

• 512 Nodes: Increasing the number of nodes to 512 results in a decrease in average reward

(-57.41) and a marginal decrease in success rate (79%). This suggests that a larger network

might introduce complexity without significant benefits in this scenario.

6. Prey Configurations:

• Default (Fixed): The default prey configuration yields consistent performance with an

average reward of -54.78 and a success rate of 80%. The predators effectively capture

fixed-position prey.

• Random: Introducing randomness in the prey's movement pattern results in a decreased

average reward (-43.25) but an increased success rate (82%). This suggests that a more

dynamic prey enhances the predator's adaptability.

• Designed Strategy: Implementing a designed escape strategy for the prey leads to a

significant decrease in average reward (-178.77) and a lower success rate (45%). This

indicates that the designed strategy might be suboptimal or requires further refinement, as

the prey is more successful in evading the predators.

Overall Insights:

• The neural network architecture plays a crucial role in the performance of the MARL

framework.

• A single dense layer might be too simplistic for capturing the intricacies of the

environment, resulting in decreased performance.

• A carefully designed neural network, with more complexity and expressive power, proves

effective in maintaining stable performance and achieving the desired success rate.

• While adjustments in learning rate, batch size, and optimizer show marginal impacts,

extreme values can lead to performance degradation.

• Increasing the number of nodes does not necessarily improve performance and may even

introduce negative effects.

• Introducing randomness in prey movement patterns enhances the adaptability of predators,

resulting in higher success rates.

These findings provide valuable guidance for further refinement of the MARL framework,

emphasizing the importance of balanced hyperparameter settings and the impact of dynamic prey

behaviors on overall system performance.

Efficiency Evaluation
This section analyzes the computational requirements of the different MARL configurations and

identifies potential areas for optimization.

 Evaluation Metrics

We evaluate the efficiency of the MARL framework based on the following metrics:

• Training Time: This metric measures the total time required to train the predator agents

until convergence. Lower training times indicate better efficiency and faster deployment

potential.

• Memory Consumption: This metric measures the RAM usage during training and

execution of the MARL algorithm. Lower memory consumption indicates better

compatibility with resource-constrained environments.

We evaluated the MARL algorithms over 300 episodes, using the defined default parameters under

a controlled environment of a fixed prey and the same initial predator positions with a max timestep

of 20 for each episode.

 Efficiency Comparison

The following table summarizes the efficiency metrics for different configurations:

MARL Configuration
Average

Score

Success

Rate

Training Time

(Hours)

Memory Consumption

(GB)

VDN -54.78 80% .75 4.960

IQL -61.04 76% .75 4.980

QMIX (over 50

episodes)

-69.64 70%
2 4.970

 Efficiency Analysis

1. Training Time:

• The training time metric provides insights into the temporal efficiency of each MARL

configuration. Notably, the VDN and IQL algorithms exhibit comparable training times of

0.75 hours, showcasing a consistent efficiency in converging to optimal policies. On the

other hand, QMIX, while achieving competitive performance, requires a longer training

time of 2 hours. This suggests that the QMIX algorithm, with its more complex

architecture, demands additional training iterations for convergence.

2. Memory Consumption:

• Memory consumption is a critical factor, particularly in resource-constrained

environments. The recorded memory consumption values reveal similar patterns across

VDN, IQL, and QMIX, with all configurations utilizing approximately 4.96 GB to 4.98

GB. These consistent memory requirements suggest that the choice of MARL algorithm

has a limited impact on RAM usage in the given experimental setup.

3. Average Score and Success Rate:

• Examining the performance metrics alongside efficiency provides a comprehensive

perspective. VDN demonstrates a balanced efficiency-performance profile with a

competitive average score of -54.78 and an 80% success rate. IQL exhibits a slightly lower

average score of -61.04 with a 76% success rate. QMIX, while achieving the lowest

average score of -69.64, maintains a relatively high success rate of 70%.

 Key Insights:

• Trade-off between Performance and Training Time: The efficient training times of

VDN and IQL, along with their competitive average scores, highlight a favorable trade-off

between performance and training time. This suggests that these algorithms strike a

balance, achieving effective learning within a reasonable timeframe.

• QMIX Complexity and Training Duration: QMIX, with its more intricate architecture,

requires a longer training duration. This trade-off between complexity and training time

emphasizes the importance of considering computational efficiency when choosing MARL

algorithms, especially in scenarios where rapid deployment is necessary.

• Consistent Memory Requirements: Consistent memory consumption across all

configurations indicates that, in the specified environment, the algorithms do not

significantly differ in their RAM usage. This implies a certain level of adaptability to

resource constraints for VDN, IQL, and QMIX under the tested conditions.

These findings highlight the trade-offs between training efficiency and coordination capabilities

in MARL algorithms. Further optimization efforts could focus on minimizing training times and

memory consumption while preserving or enhancing coordination effectiveness.

 Potential Optimization Strategies

Several strategies can be employed to further improve the efficiency of the MARL framework:

• Hardware Acceleration: Utilizing hardware accelerators such as GPUs or TPUs can

significantly accelerate training, especially for complex network architectures like the

VDN and QMIX.

• Model Pruning: Techniques like pruning can remove unnecessary weights and

connections from the network, reducing its size and memory footprint while maintaining

acceptable performance.

• Quantization: Quantization converts the model's weights and activations to lower-

precision formats, further reducing memory requirements and enabling deployment on

resource-constrained devices.

• Knowledge Distillation: This technique allows transferring knowledge from a complex

model to a smaller, more efficient model, preserving performance while reducing

computational costs.

Conclusion
This project successfully implemented a Multi-Agent Reinforcement Learning (MARL)

framework for the classic predator-prey game. By combining the VDN algorithm with a carefully

designed prey escape strategy, the framework enabled the predator agents to effectively learn

cooperative behaviors and achieve superior performance compared to baseline approaches.

The key findings of this project are as follows:

• Improved Learning with Hyperparameter Tuning: Rigorous testing of

hyperparameters, including learning rates, batch sizes, and optimizers, revealed critical

insights into their impact on the learning efficiency of the neural network. The fine-tuned

parameters, such as a learning rate of 0.0005 and the Adam optimizer, significantly

contributed to enhanced performance.

• VDN Algorithm Fosters Collaborative Behavior: The adoption of the VDN algorithm

significantly improved predator performance. Effective information sharing and

coordination among predator agents, coupled with individualized Q-value estimations, led

to higher average rewards and success rates. This underscores the algorithm's efficacy in

fostering collaboration and overcoming action value overestimation challenges.

• Prey escape strategy adds a layer of challenge: Introducing dynamic prey strategies,

including random movements and a designed escape strategy, presented varying challenges

to the predator agents. The dynamic prey configuration with a designed escape strategy

resulted in a substantial decrease in average reward, emphasizing the adaptability required

for complex scenarios.

• Optimal Model Architecture and Hyperparameters: The adoption of a neural network

with multiple hidden layers, batch normalization, and dropout layers in the agent's model

architecture contributed to improved stability during training. Additionally, the fine-tuned

hyperparameters played a crucial role in achieving a balance between rapid learning and

model stability.

• Potential for optimization: Exploring hardware acceleration, model pruning,

quantization, and knowledge distillation techniques can further enhance the efficiency and

resource utilization of the MARL framework for real-world applications.

Overall, this project demonstrates the potential of MARL for training cooperative agents to achieve

complex goals in dynamic environments. Further research could investigate alternative network

architectures, explore different prey escape strategies, and analyze the emergent behaviors of the

predator and prey agents in different settings. Additionally, incorporating the proposed

optimization strategies could enable the deployment of this MARL framework in resource-

constrained environments and pave the way for practical applications in fields like robotics,

autonomous vehicles, and game playing.

Nina’s Contributions: Neural network design, prey strategy, parameter configurations and metrics, VDN

design, report

Nathaniel’s Contributions: Neural network and parameter analysis, project guidance and outline, report

	Introduction

